A feature construction approach for genetic iterative rule learning algorithm
نویسندگان
چکیده
منابع مشابه
Genetic Algorithm Based Learning Using Feature Construction
Genetic algorithms (GAs) are excellent for learning concepts that span complex space, especially those with a large number of local optima. Learning algorithms, in general, perform well on data that has been pre-processed to reduce complexity. Several studies have documented their effectiveness on raw as well as pre-processed data using feature selection, etc. Unlike other learning algorithms (...
متن کاملA genetic algorithm approach for problem
In this paper, a genetic algorithm is presented for an identical parallel-machine scheduling problem with family setup time that minimizes the total weighted flow time ( ). No set-up is necessary between jobs belonging to the same family. A set-up must be scheduled when switching from the processing of family i jobs to those of another family j, i j, the duration of this set-up being the sequ...
متن کاملSequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...
متن کاملMOGUL: A methodology to obtain genetic fuzzy rule-based systems under the iterative rule learning approach
The main aim of this paper is to present MOGUL, a Methodology to Obtain Genetic fuzzy rule-based systems Under the iterative rule Learning approach. MOGUL will consist of some design guidelines that allow us to obtain different genetic fuzzy rule-based systems, i.e., evolutionary algorithm-based processes to automatically design fuzzy rulebased systems by learning andror tuning the fuzzy rule b...
متن کاملSequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer and System Sciences
سال: 2014
ISSN: 0022-0000
DOI: 10.1016/j.jcss.2013.03.011